206 research outputs found

    First IXPE Observations of the Accreting X-ray Pulsar Her X-1

    Get PDF
    Theoretical models for the X-ray emission of accretion-powered pulsars predict a high degree and a strong spin-phase dependence of the X-ray polarization. Using observations of the Imaging X-ray Polarimetry Explorer of the accreting pulsar Her X-1, we were able to test these predictions for the first time ever

    Micrometric Position Monitoring Using Fiber Bragg Grating Sensors in Silicon Detectors

    Full text link
    We show R&D results including long term stability, resolution, radiation hardness and characterization of Fiber Grating sensors used to monitor structure deformation, repositioning and surveying of silicon detector in High Energy Physics.Comment: Presented by S.Bianco at ICATPP05, Villa Olmo (Como) Italy, November 2005. 5 pages, 6 figures, uses lnfprep.st

    Handling the Background in IXPE Polarimetric Data

    Get PDF
    Imaging X-ray Polarimetry Explorer (IXPE) is a Small Explorer mission by NASA and Agenzia Spaziale Italiana, launched on 2021 December 9, dedicated to investigating X-ray polarimetry allowing angular-, time-, and energy-resolved observations in the 2-8 keV energy band. IXPE is in the science observation phase since 2022 January; it is comprised of three identical telescopes with grazing-incidence mirrors, each one having in the focal plane a gas pixel detector. In this paper, we present a possible guideline to obtain an optimal background selection in polarimetric analysis, and a rejection strategy to remove instrumental background. This work is based on the analysis of IXPE observations, aiming to improve as much as possible the polarimetric sensitivity. In particular, the developed strategies have been applied as a case study to the IXPE observation of the 4U 0142+61 magnetar

    Two- and Three-Dimensional Reconstruction and Analysis of the Straw Tubes Tomography in the Btev Experiment

    Full text link
    A check of the eccentricity of the aluminised kapton straw tubes used in the BTeV experiment is accomplished using X-ray tomography of the section of tubes modules. 2 and 3-dimensional images of the single tubes and of the modules are reconstructed and analysed. Preliminary results show that a precision better than 40 μ\mum can be reached on the measurement of the straw radii.Comment: Presented by F.Massa at ICATPP05, Villa Olmo (Como) Italy, November 2005. 4 pages, 8 figures, uses lnfprep.st

    Equalizing the Pixel Response of the Imaging Photoelectric Polarimeter On-Board the IXPE Mission

    Full text link
    The Gas Pixel Detector is a gas detector, sensitive to the polarization of X-rays, currently flying on-board IXPE - the first observatory dedicated to X-ray polarimetry. It detects X-rays and their polarization by imaging the ionization tracks generated by photoelectrons absorbed in the sensitive volume, and then reconstructing the initial direction of the photoelectrons. The primary ionization charge is multiplied and ultimately collected on a finely-pixellated ASIC specifically developed for X-ray polarimetry. The signal of individual pixels is processed independently and gain variations can be substantial, of the order of 20%. Such variations need to be equalized to correctly reconstruct the track shape, and therefore its polarization direction. The method to do such equalization is presented here and is based on the comparison between the mean charge of a pixel with respect to the other pixels for equivalent events. The method is shown to finely equalize the response of the detectors on board IXPE, allowing a better track reconstruction and energy resolution, and can in principle be applied to any imaging detector based on tracks.Comment: Accepted for publication in The Astronomical Journal. 10 pages, 19 figure

    Uncovering the geometry of the hot X-ray corona in the Seyfert galaxy NGC 4151 with IXPE

    Get PDF
    We present an X-ray spectropolarimetric analysis of the bright Seyfert galaxy NGC 4151. The source has been observed with the Imaging X-ray Polarimetry Explorer (IXPE) for 700 ks, complemented with simultaneous XMM–Newton (50 ks) and NuSTAR (100 ks) pointings. A polarization degree Π = 4.9 ± 1.1 per cent and angle Ψ = 86° ± 7° east of north (68 per cent confidence level) are measured in the 2–8 keV energy range. The spectropolarimetric analysis shows that the polarization could be entirely due to reflection. Given the low reflection flux in the IXPE band, this requires, however, a reflection with a very large (>38 per cent) polarization degree. Assuming more reasonable values, a polarization degree of the hot corona ranging from ∼4 to ∼8 per cent is found. The observed polarization degree excludes a ‘spherical’ lamppost geometry for the corona, suggesting instead a slab-like geometry, possibly a wedge, as determined via Monte Carlo simulations. This is further confirmed by the X-ray polarization angle, which coincides with the direction of the extended radio emission in this source, supposed to match the disc axis. NGC 4151 is the first active galactic nucleus with an X-ray polarization measure for the corona, illustrating the capabilities of X-ray polarimetry and IXPE in unveiling its geometry

    The X-ray polarization of the Seyfert 1 galaxy IC 4329A

    Get PDF
    We present an X-ray spectro-polarimetric analysis of the bright Seyfert galaxy IC 4329A. The Imaging X-ray Polarimetry Explorer (IXPE) observed the source for ∼500 ks, supported by XMM–Newton (∼60 ks) and NuSTAR (∼80 ks) exposures. We detect polarization in the 2–8 keV band with 2.97σ confidence. We report a polarization degree of 3.3 ± 1.1 per cent and a polarization angle of 78° ± 10° (errors are 1σ confidence). The X-ray polarization is consistent with being aligned with the radio jet, albeit partially due to large uncertainties on the radio position angle. We jointly fit the spectra from the three observatories to constrain the presence of a relativistic reflection component. From this, we obtain constraints on the inclination angle to the inner disc (<39° at 99 per cent confidence) and the disc inner radius (<11 gravitational radii at 99 per cent confidence), although we note that modelling systematics in practice add to the quoted statistical error. Our spectropolarimetric modelling indicates that the 2–8 keV polarization is consistent with being dominated by emission directly observed from the X-ray corona, but the polarization of the reflection component is completely unconstrained. Our constraints on viewer inclination and polarization degree tentatively favour more asymmetric, possibly out-flowing, coronal geometries that produce more highly polarized emission, but the coronal geometry is unconstrained at the 3σ level
    corecore